Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Dis ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-2297026
2.
Vaccine ; 41(16): 2696-2706, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2286790

ABSTRACT

BACKGROUND: HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS: Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS: EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS: This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. CLINICALTRIALS: gov: NCT02654080.


Subject(s)
AIDS Vaccines , HIV Infections , Vaccines, DNA , Vesicular Stomatitis , Adult , Animals , Humans , Immunization, Secondary , HIV Infections/prevention & control , Electroporation , Antibodies, Neutralizing , DNA , HIV Antibodies
4.
J Acquir Immune Defic Syndr ; 90(4): 369-376, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1909060

ABSTRACT

BACKGROUND: Understanding the spectrum of COVID-19 in people with HIV (PWH) is critical to provide clinical guidance and risk reduction strategies. SETTING: Centers for AIDS Research Network of Integrated Clinic System, a US multisite clinical cohort of PWH in care. METHODS: We identified COVID-19 cases and severity (hospitalization, intensive care, and death) in a large, diverse HIV cohort during March 1, 2020-December 31, 2020. We determined predictors and relative risks of hospitalization among PWH with COVID-19, adjusted for disease risk scores. RESULTS: Of 16,056 PWH in care, 649 were diagnosed with COVID-19 between March and December 2020. Case fatality was 2%; 106 (16.3%) were hospitalized, and 12 died. PWH with current CD4 count <350 cells/mm 3 [aRR 2.68; 95% confidence interval (CI): 1.93 to 3.71; P < 0.001] or lowest recorded CD4 count <200 cells/mm 3 (aRR 1.67; 95% CI: 1.18 to 2.36; P < 0.005) had greater risks of hospitalization. HIV viral load and antiretroviral therapy status were not associated with hospitalization, although most of the PWH were suppressed (86%). Black PWH were 51% more likely to be hospitalized with COVID-19 compared with other racial/ethnic groups (aRR 1.51; 95% CI: 1.04 to 2.19; P = 0.03). Chronic kidney disease, chronic obstructive pulmonary disease, diabetes, hypertension, obesity, and increased cardiovascular and hepatic fibrosis risk scores were associated with higher hospitalization risk. PWH who were older, not on antiretroviral therapy, and with current CD4 count <350 cells/mm 3 , diabetes, and chronic kidney disease were overrepresented among PWH who required intubation or died. CONCLUSIONS: PWH with CD4 count <350 cells/mm 3 , and a history of CD4 count <200 cells/mm 3 , have a clear excess risk of severe COVID-19, accounting for comorbidities associated with severe outcomes. PWH with these risk factors should be prioritized for COVID-19 vaccination and early treatment and monitored closely for worsening illness.


Subject(s)
COVID-19 , HIV Infections , Renal Insufficiency, Chronic , CD4 Lymphocyte Count , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Renal Insufficiency, Chronic/complications , United States/epidemiology
5.
AIDS ; 36(8): 1095-1103, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1909054

ABSTRACT

OBJECTIVES: To define the incidence of clinically detected coronavirus disease 2019 (COVID-19) in people with HIV (PWH) in the United States and evaluate how racial and ethnic disparities, comorbidities, and HIV-related factors contribute to risk of COVID-19. DESIGN: Observational study within the CFAR Network of Integrated Clinical Systems cohort in seven cities during 2020. METHODS: We calculated cumulative incidence rates of COVID-19 diagnosis among PWH in routine care by key characteristics including race/ethnicity, current and lowest CD4+ cell count, and geographic area. We evaluated risk factors for COVID-19 among PWH using relative risk regression models adjusted with disease risk scores. RESULTS: Among 16 056 PWH in care, of whom 44.5% were black, 12.5% were Hispanic, with a median age of 52 years (IQR 40-59), 18% had a current CD4+ cell count less than 350 cells/µl, including 7% less than 200; 95.5% were on antiretroviral therapy (ART), and 85.6% were virologically suppressed. Overall in 2020, 649 PWH were diagnosed with COVID-19 for a rate of 4.94 cases per 100 person-years. The cumulative incidence of COVID-19 was 2.4-fold and 1.7-fold higher in Hispanic and black PWH respectively, than non-Hispanic white PWH. In adjusted analyses, factors associated with COVID-19 included female sex, Hispanic or black identity, lowest historical CD4+ cell count less than 350 cells/µl (proxy for CD4+ nadir), current low CD4+ : CD8+ ratio, diabetes, and obesity. CONCLUSION: Our results suggest that the presence of structural racial inequities above and beyond medical comorbidities increased the risk of COVID-19 among PWH. PWH with immune exhaustion as evidenced by lowest historical CD4+ cell count or current low CD4+ : CD8+ ratio had greater risk of COVID-19.


Subject(s)
COVID-19 , HIV Infections , Adult , COVID-19/epidemiology , COVID-19 Testing , Ethnicity , Female , HIV Infections/drug therapy , Humans , Incidence , Middle Aged , United States/epidemiology
6.
Sci Rep ; 12(1): 696, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1621270

ABSTRACT

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Subject(s)
Acute Chest Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Antibodies, Neutralizing/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Disease Models, Animal , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , SARS-CoV-2/pathogenicity , Swine
7.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1219850

ABSTRACT

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Antibodies, Monoclonal , Humans , Mice , Mice, Inbred C57BL , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL